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Abstract: A MANET is an autonomous collection of mobile users that communicate over relatively bandwidth constrained wireless links. 
Since the nodes are mobile, the network topology may change rapidly and unpredictably over time. The network is decentralized, where all 
network activity including discovering the topology and delivering messages must be executed by the nodes themselves, i.e., routing 
functionality will be incorporated into mobile nodes. As it is decentralized, the problem of fair distribution of available bandwidth among traffic 
flows or aggregates remains an essential issue in computer networks. Unlike wired networks, some unique characteristics of mobile ad hoc 
networks seriously deteriorate TCP performance. These characteristics include the unpredictable wireless channels due to fading and 
interference, the vulnerable shared media access due to random access collision, the hidden terminal problem and the exposed terminal 
problem, and the frequent route breakages due to node mobility. Undoubtedly, all of these pose great challenges on TCP to provide reliable 
end-to-end communications in mobile ad hoc networks. This paper focuses on fair distribution of bandwidth over TCP networks preventing 
packet losses and implementing congestion control for reducing bit error rates. 
 
Index terms- MANET, Bandwidth, Fairness, Efficiency. 

——————————      —————————— 
 
1 INTRODUCTION 

n this paper we address TCP performance within a 
multi hop wireless ad hoc network. This has been 
an area of active research recently, and progress 
has been reported in several directions. Three 
different types of challenges are posed to TCP 
design by such networks. First, as the topology 
changes, the path is interrupted and TCP goes into 
repeated, exponentially increasing time-outs with 
severe performance impact. The second problem 
has to do with the fact that TCP performance in ad 
hoc multi hop environment depends critically on 
the congestion window in use. If the window 
grows too large, there are too many packets (and 
ACKs) on the path, all competing for the same 
medium. 
This paper focuses on the third problem, namely, 
enhancing TCP fairness in ad hoc networks. 
Previous work on this topic mostly dealt with the 
underlying factors causing TCP unfairness. So far, 
no successful attempts on TCP fairness restoration 
have been reported. Many specific factors have 
been identified as the triggers of TCP unfairness, 
such as: channel capture, hidden and exposed 
terminal conditions, and the binary exponential 
back off of IEEE 802.11 MAC etc. 

 
 

 
 

In this paper we argue that two unique features of 
ad hoc wireless networks are the key to understand 
unfair TCP behaviors. One is the spatial reuse 
constraint; the other is the location dependency. The 
former implies that space is also a kind of shared 
resource. TCP flows, which do not even traverse 
common nodes, may still compete for “shared space” 
and thus interfere with each other. The latter, location 
dependency, triggers various problems mentioned 
above, which are often recognized as the primary 
reasons for TCP unfairness.TCP flows with different 
relative positions in the bottleneck may get different 
perception of the bottleneck situation in terms of 
packet delay and packet loss rate. If we view a node 
and its interfering neighbors to form a neighborhood, 
the local queues at these nodes can be considered to 
form a distributed queue for this neighborhood. This 
distributed queue is not a FIFO queue.  

Flows sharing this queue have different and 
dynamic priorities determined by the topology and 
traffic patterns due to channel capture, hidden and 
exposed terminal situations etc. Thus, they get 
different feedback in terms of packet loss rate and 
packet delay when congestion happens. The uneven 
feedback makes TCP congestion control diverge from 
the fair share. Similar situations may occur in wired 
networks when a buffer is full and drop tail queue 
management scheme is used. 

In this paper, we propose a Fair share distribution 
(FSD) scheme, which extends the original RED scheme 
to operate on the distributed neighborhood queue. As 
RED does, each node keeps estimating the size of its 
neighborhood queue. Once the queue size exceeds a 
certain threshold, a drop probability is computed by 
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using the algorithm from the original RED scheme. 
Since a neighborhood queue is the aggregate of local 
queues at neighboring nodes, this drop probability is 
then propagated to neighboring nodes for cooperative 
packet drops. Each neighbor node computes its local 
drop probability based on its channel bandwidth 
usage and drops packets accordingly. The overall drop 
probability will realize the calculated drop probability 
on the whole neighborhood queue. Thus, the FSD 
scheme is basically a distributed RED suitable for ad 
hoc wireless networks. [1] 

The robustness of today’s Internet depends 
heavily on the TCP congestion control mechanism. 
However, as more and more UDP applications (e.g. 
packet audio/video applications) are deployed on the 
Internet, people cannot rely on end users to 
incorporate proper congestion control. Router 
mechanisms must be provided to protect responsive 
flows from non-responsive ones, and prevent 
“Internet meltdown”. Several methods have been 
proposed for the management of shared resources on 
the Internet, active queue management is one of the 
major approaches.  

Traffic on the Internet tends to fluctuate and to be 
greedy. Ideally, a router queue management algorithm 
should allow temporary burst traffic, and penalize 
flows that persistently overuse bandwidth. Also, the 
algorithm should prevent high delay by restricting the 
queue length, avoid underutilization by allowing 
temporary queuing, and allocate resource fairly 
among different types of traffic [1]. In practice, most of 
the routers being deployed use simplistic Drop Tail 
algorithm, which is simple to implement with minimal 
computation overhead, but provides unsatisfactory 
performance.  

To attack this problem, many queue management 
algorithms are proposed, such as Random Early Drop 
(RED) [3] , BLUE, Stochastic Fair BLUE (SFB), and 
CHOKE (Choose and Keep for responsive flows, 
Choose and Kill for unresponsive flows). Most of the 
algorithms claim that they can provide fair sharing 
among different flows without imposing too much 
deployment complexity. Most of the proposals focus 
on only one aspect of the problem (whether it is 
fairness, deployment complexity, or computational 
overhead), or fix the imperfections of previous 
algorithms, and their simulations setting are different 
from each other. These all make it difficult to evaluate, 
and to choose one to use under certain traffic load.[3] 
RED-RED [3] was designed with the objectives to (1) 
minimize packet loss and queuing delay, (2) avoid 
global synchronization of sources, (3) maintain high 
link utilization, and (4) remove biases against burst 
sources. The basic idea behind RED queue 
management is to detect incipient congestion early 

and to convey congestion notification to the end-hosts, 
allowing them to reduce their transmission rates 
before queues in the network overflow and packets 
are dropped.  

To do this, RED maintains an exponentially-
weighted moving average (EWMA) of the queue 
length which it uses to detect congestion. When the 
average queue length exceeds a minimum threshold 
(minth), packets are randomly dropped or marked 
with an explicit congestion notification (ECN) bit [2]. 
When the average queue length exceeds a maximum 
threshold (maxth), all packets are dropped or marked.  
While RED is certainly an improvement over 
traditional drop tail queues, it has several 
shortcomings.  

One of the fundamental problems with RED is 
that they rely on queue length as an estimator of 
congestion. While the presence of a persistent queue 
indicates congestion, its length gives very little 
information as to the severity of congestion. That is, 
the number of competing connections sharing the link. 
In a busy period, a single source transmitting at a rate 
greater than the bottleneck link capacity can cause a 
queue to build up just as easily as a large number of 
sources can. Since the RED algorithm relies on queue 
lengths, it has an inherent problem in determining the 
severity of congestion.  

As a result, RED requires a wide range of 
parameters to operate correctly under different 
congestion scenarios. While RED can achieve an ideal 
operating point, it can only do so when it has a 
sufficient amount of buffer space and is correctly 
parameterized [3]. 

RED represents a class of queue management 
mechanisms that does not keep the state of each flow. 
That is, they put the data from the all the flows into 
one queue, and focus on their overall performance. 
 
2 RELATED WORK AND THEIR IMPACT 

We briefly introduce how the previous research 
work has overcome TCP unfairness. Some efforts have 
addressed the TCP fairness issue in ad hoc networks. 
Tang and Gerla et al investigated scenarios TCP 
fairness over different MAC protocols. IEEE802.11 
always came on top in terms of both throughput and 
fairness, but it could not achieve acceptable fairness in 
the ring and grid topologies.  

A simple MAC layer technique, an additional 
yield time was used to restrain the node that used the 
channel last, is proposed. Xu et al investigated TCP 
fairness over 802.11 MAC in ad hoc networks. Their 
work provides good understanding of the underlying 
reasons that trigger TCP unfairness, but no remedy is 
proposed in that work. Gerla et al investigated TCP 
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unfairness on a path across a wired and multi-hop 
wireless network. They identified hidden and exposed 
terminals and the interaction of IEEE MAC and TCP 
congestion control as the key factors that prevent TCP 
form stabilizing at fair-share.  

Instead of focusing on channel and MAC protocol 
features in an attempt to identify the factors triggering 
TCP unfairness, [1] and modify RED scheme to solve 
the TCP unfairness problem.[1] proposed Neighbor 
RED which extends the RED concept to distributed 
neighbor-hood queue. Zhenghua Fu et al proposed 
link RED and adaptive pacing which made link drop 
probability sufficient to stabilize the large TCP 
window size. [2] 

Recently, several techniques have been proposed 
to improve TCP performance in ad hoc networks. 
Most of these techniques address mobility, link 
breakages and routing algorithm failures. Schemes 
such as ELFN, TCP-F, Fixed-RTO and TCP-DOOR 
belong to this category. Together, this work gives 
reasonable understanding on mobility related TCP 
inefficiencies. There is, however, another important 
problem area in wireless ad hoc networks, namely 
TCP unfairness. This area has received less attention in 
the past, although the problem is significant. This 
unfair behavior may seriously delay or even lock out a 
critical application. Some efforts have addressed the 
TCP fairness issue in ad hoc networks.  

In Tang and Gerla et al investigation, TCP fairness 
over different MAC protocols, namely CSMA, AMA, 
MACAW and IEEE 802.11 is done. In all the 
investigated scenarios, IEEE 802.11 always came on 
top in terms of both throughput and fairness. 
However, even IEEE 802.11 could not achieve 
acceptable fairness in the ring and grid topologies 
with TCP congestion window size allowed to grow 
larger than 1 packet.  

A simple MAC layer technique was proposed by 
the authors. An additional yield time was used to 
restrain the node that used the channel last. It shows 
improved fairness under the ring topology. Xu et al 
investigated TCP fairness over IEEE802.11 MAC in ad 
hoc wireless networks. Their work provides a good 
understanding of the underlying reasons that trigger 
TCP unfairness. No remedy, however, is proposed in 
that work.  Gerla et al investigated TCP unfairness on 
a path across a wired and multi hop wireless network. 
Again, they found that the problem resides in the 
wireless segment. More precisely, they identified 
hidden and exposed terminals and the interaction of 
IEEE MAC and TCP congestion control as the key 
factors that prevent TCP from stabilizing at fair-share. 
[1]. 

Most of the prior work is focused on channel and 
MAC protocol features in an attempt to identify the 

factors triggering TCP unfairness. However, so far, no 
complete solution to this problem has yet been 
reported. In this paper, we attack the problem at the 
network layer. We explore the relationship between 
TCP unfairness and early network congestion. RED 
was helpful in detecting congestion in wired networks 
and in enhancing fairness. We wish to extend the RED 
scheme into mobile multi hop ad hoc networks. Such 
an extension is not trivial as ad hoc wireless networks 
have very unique features such as location 
dependency [1].  

 
3 PROTOTYPE IMPLEMENTATION 

Perceiving the hidden reasons why TCP can't 
converge to the fair share, the proposed solution for 
restoring TCP fairness is how to feed the contending 
flows with the same congestion feedback from the 
bottleneck (e.g. packet drop probability and packet 
delay corresponding to the offer of transfer speed 
utilized by each TCP flow). Some type of TCP 
unfairness, albeit by a wide margin not as sensational 
as in the multi hop case, shows itself likewise in the 
wired Internet when drop tail line administration plan 
is utilized. The RED dynamic line administration plan 
tackles that issue by keeping the line estimate 
generally little and dropping or stamping parcels of a 
stream relatively to its cushion inhabitance and along 
these lines transfer speed offer. This has incited us to 
apply a RED-like plan to the circulated neighborhood 
queue, which we call Neighborhood Random Early 
Detection. To do so, we need to solve 3 problems.  
1) How to detect the early congestion of a 
neighborhood? More precisely, how to compute the 
average queue size of the distributed neighborhood 
queue?  
2)  When and how does a node inform its neighbors 
about the congestion?  
3)  How do the neighbor nodes calculate their local 
drop probabilities so that they add up to the targeted 
overall drop probability? 
 
Neighborhood Congestion Detection 

An immediate approach to monitor the 
neighborhood queue size is to let each node broadcast 
a control packet all through its neighborhood to report 
its queue size (and destinations of lined packets) upon 
every packet entry or takeoff. By this strategy, a hub 
can number its neighborhood line measure absolutely. 
In any case, in a portable impromptu remote system 
the topology and activity example might consistently 
change. Regardless of the possibility that there is no 
versatility, line size changes are incessant. 

A considerable measure of control overhead will 
be created by this engendering of line size data. It is 
counterproductive to screen blockage by setting off a 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015                                                                                         1033 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

 
 

considerable measure of additional movement 
overhead, which really exacerbates the clogging. 

Rather than effectively promoting line size data, 
we select a latent estimation system. Also, as opposed 
to measuring line size, we pick a substitute measure 
identified with line size-to be specific, channel use – 
which is much less demanding to screen than 
"neighborhood queue size". Normally, there is a 
relationship between channel usage and the extent of 
both active and approaching lines. 

At the point when these lines are occupied, 
channel use around the hub is more inclined to 
increment. Presently, the trap is to make sense of how 
to gauge and record for the different segments of 
channel use. To this end, let us precisely analyze node 
A's neighborhood line demonstrated in Figure 4. At 
the point when a bundle in any cordial line is 
transmitted, node A will recognize the medium as 
occupied. In the event that a parcel is gotten to any 
approaching line, hub A can likewise realize this 
through the CTS bundle (we accept IEEE 802.11 MAC 
layer). These two estimations can infer inputs required 
for FSD usage. 

FSD develops the first RED plan. Every hub 
continues assessing the span of its neighborhood line 
(distributed queue). When the queue size surpasses a 
certain threshold, a overall drop probability is 
processed by the calculation of RED. This general drop 
probability is then proliferated to neighboring nodes 
for cooperative packet drops. 

Distributed Queue of a Node-the outgoing queue 
of the node itself, 1-hop neighbors' outgoing queues, 
2-hop neighbors’ packets which are directed to a 1-hop 
neighbor of node A. Simplified Model is 2-hop 
neighborhood distributed queue model is not easy to 
implement and evaluate a lot of control packet 
overhead. The packets in the 2-hop neighbors directed 
to a 1-hop neighbor are moved to the 1-hop neighbor. 
Outgoing queue has the original queue at a node 
Incoming queue has the packets from 2-hop neighbors 
as in figure 1.  
  

 
 

Fig 1: Neighborhood Queue Model 
 

 
Neighborhood Congestion Detection (NCD): A node 
monitors five different radio state Transmitting (Ttx), 
Receiving (Trx), Carrier sensing busy (Tcs), Virtual 
carrier sending busy (Tvcs), Idle (Tidle). By monitoring 
the five radio states, a node can now estimate 3 
channel utilization ratio  
Total channel utilization  
Ubusy = (Tinterval  - T idle)/ Tinterval   
Transmitting ratio Utx = Ttx/ T interval 
Receiving ratio Urx = Trx/ Tinterval 
Tinterval = Ttx + Trx + Tcs + Tvcs + Tidle  
Ubusy reflects the size of the neighborhood queue 
Utx and Urx reflect the channel bandwidth usage of the 
outgoing queue and incoming queue at current node. 
To facilitate the implementation of the RED algorithm, 
the channel utilization is translated into an index of 
the queue size 
The queue size index q =     Ubusy  * W /C                  
W: channel bandwidth, C: the average packet size 
Now the original RED scheme can be applied 
The average queue size, avg = (1-wq)*avg + wq*q 
If the queue size exceeds a certain threshold, the 
neighborhood is in congestion. 
Drop probability 
Pb = Maxp* (Avg – Minth)/( Maxth - Minth) 
Normalized Pb = Pb/avg  
Current node A broadcasts Drop probability to 1-hop 
neighbors. 
The broadcast message  drop probability + life time  
Neighborhood nodes choose the largest drop 
probability, if they receive multiple NCN. 
 
4 RESULTS 
 

 
Fig 2: Verification of Queue size 

 
In figure 2, estimated average queue size and the real 
average queue size of Node 5’s neighborhood under 
FTP/TCP connections. 
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It is observed that when there is heavy congestion, 
the estimated queue size goes around 240 packets. 
Thus, we choose maxth as 240. To get smooth drop 
probability, we set minth as 100. Simulation 
experiments are used to decide the optimal values of 
maxp. 
 

 
Fig 3: Instantaneous throughput dynamics under 

mobility without FSD 
 
 

In Figure 3, the disadvantage of competing the 
channel is shown. 
 

 
Fig 4: Instantaneous throughput dynamics under 

mobility with FSD 
 

In figure 4, it is shown that the two flows can 
share the channel fairly when they are close enough to 
interfere with each other. 
It clearly demonstrates that the FSD scheme is indeed 
can adapt to mobility. 
 

 
Fig 5: Overall throughput of each TCP connections 

with and without FSD. 
  

In figure 5, we can observe that FSD scheme is still 
able to improve fairness in general, especially reflected 
by throughput of flow 2 and flow 3. First, TCP 
throughput is highly affected by the number of hops 
from senders to receivers. 

 
5 CONCLUSION 
 

TCP performance is critical to the broad 
acceptance of multi hop wireless networks. In this 
paper, we proposed a scheme called FSD, which is an 
extension of the RED originally developed in the ad 
hoc wireless networks. By detecting early congestion 
and dropping packets proportionally to a flow’s 
channel bandwidth usage, the FSD scheme is able to 
improve TCP fairness. 
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