
International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1030
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Enrichment of TCP Fairness in MANETs
using FSD Algorithm

Varun Manchikalapudi(1), Sk.Khadar Babu(2)

Abstract: A MANET is an autonomous collection of mobile users that communicate over relatively bandwidth constrained wireless links.
Since the nodes are mobile, the network topology may change rapidly and unpredictably over time. The network is decentralized, where all
network activity including discovering the topology and delivering messages must be executed by the nodes themselves, i.e., routing
functionality will be incorporated into mobile nodes. As it is decentralized, the problem of fair distribution of available bandwidth among traffic
flows or aggregates remains an essential issue in computer networks. Unlike wired networks, some unique characteristics of mobile ad hoc
networks seriously deteriorate TCP performance. These characteristics include the unpredictable wireless channels due to fading and
interference, the vulnerable shared media access due to random access collision, the hidden terminal problem and the exposed terminal
problem, and the frequent route breakages due to node mobility. Undoubtedly, all of these pose great challenges on TCP to provide reliable
end-to-end communications in mobile ad hoc networks. This paper focuses on fair distribution of bandwidth over TCP networks preventing
packet losses and implementing congestion control for reducing bit error rates.

Index terms- MANET, Bandwidth, Fairness, Efficiency.

—————————— ——————————

1 INTRODUCTION

n this paper we address TCP performance within a
multi hop wireless ad hoc network. This has been
an area of active research recently, and progress
has been reported in several directions. Three
different types of challenges are posed to TCP
design by such networks. First, as the topology
changes, the path is interrupted and TCP goes into
repeated, exponentially increasing time-outs with
severe performance impact. The second problem
has to do with the fact that TCP performance in ad
hoc multi hop environment depends critically on
the congestion window in use. If the window
grows too large, there are too many packets (and
ACKs) on the path, all competing for the same
medium.
This paper focuses on the third problem, namely,
enhancing TCP fairness in ad hoc networks.
Previous work on this topic mostly dealt with the
underlying factors causing TCP unfairness. So far,
no successful attempts on TCP fairness restoration
have been reported. Many specific factors have
been identified as the triggers of TCP unfairness,
such as: channel capture, hidden and exposed
terminal conditions, and the binary exponential
back off of IEEE 802.11 MAC etc.

In this paper we argue that two unique features of
ad hoc wireless networks are the key to understand
unfair TCP behaviors. One is the spatial reuse
constraint; the other is the location dependency. The
former implies that space is also a kind of shared
resource. TCP flows, which do not even traverse
common nodes, may still compete for “shared space”
and thus interfere with each other. The latter, location
dependency, triggers various problems mentioned
above, which are often recognized as the primary
reasons for TCP unfairness.TCP flows with different
relative positions in the bottleneck may get different
perception of the bottleneck situation in terms of
packet delay and packet loss rate. If we view a node
and its interfering neighbors to form a neighborhood,
the local queues at these nodes can be considered to
form a distributed queue for this neighborhood. This
distributed queue is not a FIFO queue.

Flows sharing this queue have different and
dynamic priorities determined by the topology and
traffic patterns due to channel capture, hidden and
exposed terminal situations etc. Thus, they get
different feedback in terms of packet loss rate and
packet delay when congestion happens. The uneven
feedback makes TCP congestion control diverge from
the fair share. Similar situations may occur in wired
networks when a buffer is full and drop tail queue
management scheme is used.

In this paper, we propose a Fair share distribution
(FSD) scheme, which extends the original RED scheme
to operate on the distributed neighborhood queue. As
RED does, each node keeps estimating the size of its
neighborhood queue. Once the queue size exceeds a
certain threshold, a drop probability is computed by

--
• Varun Manchikalapudi is Research Scholar in School of Computing

Science & Engineering in VIT University, Vellore, Tamil Nadu, India. E-
mail: varunmanchikalapudi@gmail.com

• Sk.Khadar Babu is currently working as Sr. Assistant Professor in School
of Advanced Sciences in VIT University, Vellore, Tamil Nadu, India.
E-mail:khadar.babu36@gmail.com

I

IJSER

http://www.ijser.org/
mailto:varunmanchikalapudi@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1031
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

using the algorithm from the original RED scheme.
Since a neighborhood queue is the aggregate of local
queues at neighboring nodes, this drop probability is
then propagated to neighboring nodes for cooperative
packet drops. Each neighbor node computes its local
drop probability based on its channel bandwidth
usage and drops packets accordingly. The overall drop
probability will realize the calculated drop probability
on the whole neighborhood queue. Thus, the FSD
scheme is basically a distributed RED suitable for ad
hoc wireless networks. [1]

The robustness of today’s Internet depends
heavily on the TCP congestion control mechanism.
However, as more and more UDP applications (e.g.
packet audio/video applications) are deployed on the
Internet, people cannot rely on end users to
incorporate proper congestion control. Router
mechanisms must be provided to protect responsive
flows from non-responsive ones, and prevent
“Internet meltdown”. Several methods have been
proposed for the management of shared resources on
the Internet, active queue management is one of the
major approaches.

Traffic on the Internet tends to fluctuate and to be
greedy. Ideally, a router queue management algorithm
should allow temporary burst traffic, and penalize
flows that persistently overuse bandwidth. Also, the
algorithm should prevent high delay by restricting the
queue length, avoid underutilization by allowing
temporary queuing, and allocate resource fairly
among different types of traffic [1]. In practice, most of
the routers being deployed use simplistic Drop Tail
algorithm, which is simple to implement with minimal
computation overhead, but provides unsatisfactory
performance.

To attack this problem, many queue management
algorithms are proposed, such as Random Early Drop
(RED) [3] , BLUE, Stochastic Fair BLUE (SFB), and
CHOKE (Choose and Keep for responsive flows,
Choose and Kill for unresponsive flows). Most of the
algorithms claim that they can provide fair sharing
among different flows without imposing too much
deployment complexity. Most of the proposals focus
on only one aspect of the problem (whether it is
fairness, deployment complexity, or computational
overhead), or fix the imperfections of previous
algorithms, and their simulations setting are different
from each other. These all make it difficult to evaluate,
and to choose one to use under certain traffic load.[3]
RED-RED [3] was designed with the objectives to (1)
minimize packet loss and queuing delay, (2) avoid
global synchronization of sources, (3) maintain high
link utilization, and (4) remove biases against burst
sources. The basic idea behind RED queue
management is to detect incipient congestion early

and to convey congestion notification to the end-hosts,
allowing them to reduce their transmission rates
before queues in the network overflow and packets
are dropped.

To do this, RED maintains an exponentially-
weighted moving average (EWMA) of the queue
length which it uses to detect congestion. When the
average queue length exceeds a minimum threshold
(minth), packets are randomly dropped or marked
with an explicit congestion notification (ECN) bit [2].
When the average queue length exceeds a maximum
threshold (maxth), all packets are dropped or marked.
While RED is certainly an improvement over
traditional drop tail queues, it has several
shortcomings.

One of the fundamental problems with RED is
that they rely on queue length as an estimator of
congestion. While the presence of a persistent queue
indicates congestion, its length gives very little
information as to the severity of congestion. That is,
the number of competing connections sharing the link.
In a busy period, a single source transmitting at a rate
greater than the bottleneck link capacity can cause a
queue to build up just as easily as a large number of
sources can. Since the RED algorithm relies on queue
lengths, it has an inherent problem in determining the
severity of congestion.

As a result, RED requires a wide range of
parameters to operate correctly under different
congestion scenarios. While RED can achieve an ideal
operating point, it can only do so when it has a
sufficient amount of buffer space and is correctly
parameterized [3].

RED represents a class of queue management
mechanisms that does not keep the state of each flow.
That is, they put the data from the all the flows into
one queue, and focus on their overall performance.

2 RELATED WORK AND THEIR IMPACT

We briefly introduce how the previous research
work has overcome TCP unfairness. Some efforts have
addressed the TCP fairness issue in ad hoc networks.
Tang and Gerla et al investigated scenarios TCP
fairness over different MAC protocols. IEEE802.11
always came on top in terms of both throughput and
fairness, but it could not achieve acceptable fairness in
the ring and grid topologies.

A simple MAC layer technique, an additional
yield time was used to restrain the node that used the
channel last, is proposed. Xu et al investigated TCP
fairness over 802.11 MAC in ad hoc networks. Their
work provides good understanding of the underlying
reasons that trigger TCP unfairness, but no remedy is
proposed in that work. Gerla et al investigated TCP

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1032
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

unfairness on a path across a wired and multi-hop
wireless network. They identified hidden and exposed
terminals and the interaction of IEEE MAC and TCP
congestion control as the key factors that prevent TCP
form stabilizing at fair-share.

Instead of focusing on channel and MAC protocol
features in an attempt to identify the factors triggering
TCP unfairness, [1] and modify RED scheme to solve
the TCP unfairness problem.[1] proposed Neighbor
RED which extends the RED concept to distributed
neighbor-hood queue. Zhenghua Fu et al proposed
link RED and adaptive pacing which made link drop
probability sufficient to stabilize the large TCP
window size. [2]

Recently, several techniques have been proposed
to improve TCP performance in ad hoc networks.
Most of these techniques address mobility, link
breakages and routing algorithm failures. Schemes
such as ELFN, TCP-F, Fixed-RTO and TCP-DOOR
belong to this category. Together, this work gives
reasonable understanding on mobility related TCP
inefficiencies. There is, however, another important
problem area in wireless ad hoc networks, namely
TCP unfairness. This area has received less attention in
the past, although the problem is significant. This
unfair behavior may seriously delay or even lock out a
critical application. Some efforts have addressed the
TCP fairness issue in ad hoc networks.

In Tang and Gerla et al investigation, TCP fairness
over different MAC protocols, namely CSMA, AMA,
MACAW and IEEE 802.11 is done. In all the
investigated scenarios, IEEE 802.11 always came on
top in terms of both throughput and fairness.
However, even IEEE 802.11 could not achieve
acceptable fairness in the ring and grid topologies
with TCP congestion window size allowed to grow
larger than 1 packet.

A simple MAC layer technique was proposed by
the authors. An additional yield time was used to
restrain the node that used the channel last. It shows
improved fairness under the ring topology. Xu et al
investigated TCP fairness over IEEE802.11 MAC in ad
hoc wireless networks. Their work provides a good
understanding of the underlying reasons that trigger
TCP unfairness. No remedy, however, is proposed in
that work. Gerla et al investigated TCP unfairness on
a path across a wired and multi hop wireless network.
Again, they found that the problem resides in the
wireless segment. More precisely, they identified
hidden and exposed terminals and the interaction of
IEEE MAC and TCP congestion control as the key
factors that prevent TCP from stabilizing at fair-share.
[1].

Most of the prior work is focused on channel and
MAC protocol features in an attempt to identify the

factors triggering TCP unfairness. However, so far, no
complete solution to this problem has yet been
reported. In this paper, we attack the problem at the
network layer. We explore the relationship between
TCP unfairness and early network congestion. RED
was helpful in detecting congestion in wired networks
and in enhancing fairness. We wish to extend the RED
scheme into mobile multi hop ad hoc networks. Such
an extension is not trivial as ad hoc wireless networks
have very unique features such as location
dependency [1].

3 PROTOTYPE IMPLEMENTATION

Perceiving the hidden reasons why TCP can't
converge to the fair share, the proposed solution for
restoring TCP fairness is how to feed the contending
flows with the same congestion feedback from the
bottleneck (e.g. packet drop probability and packet
delay corresponding to the offer of transfer speed
utilized by each TCP flow). Some type of TCP
unfairness, albeit by a wide margin not as sensational
as in the multi hop case, shows itself likewise in the
wired Internet when drop tail line administration plan
is utilized. The RED dynamic line administration plan
tackles that issue by keeping the line estimate
generally little and dropping or stamping parcels of a
stream relatively to its cushion inhabitance and along
these lines transfer speed offer. This has incited us to
apply a RED-like plan to the circulated neighborhood
queue, which we call Neighborhood Random Early
Detection. To do so, we need to solve 3 problems.
1) How to detect the early congestion of a
neighborhood? More precisely, how to compute the
average queue size of the distributed neighborhood
queue?
2) When and how does a node inform its neighbors
about the congestion?
3) How do the neighbor nodes calculate their local
drop probabilities so that they add up to the targeted
overall drop probability?

Neighborhood Congestion Detection

An immediate approach to monitor the
neighborhood queue size is to let each node broadcast
a control packet all through its neighborhood to report
its queue size (and destinations of lined packets) upon
every packet entry or takeoff. By this strategy, a hub
can number its neighborhood line measure absolutely.
In any case, in a portable impromptu remote system
the topology and activity example might consistently
change. Regardless of the possibility that there is no
versatility, line size changes are incessant.

A considerable measure of control overhead will
be created by this engendering of line size data. It is
counterproductive to screen blockage by setting off a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1033
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

considerable measure of additional movement
overhead, which really exacerbates the clogging.

Rather than effectively promoting line size data,
we select a latent estimation system. Also, as opposed
to measuring line size, we pick a substitute measure
identified with line size-to be specific, channel use –
which is much less demanding to screen than
"neighborhood queue size". Normally, there is a
relationship between channel usage and the extent of
both active and approaching lines.

At the point when these lines are occupied,
channel use around the hub is more inclined to
increment. Presently, the trap is to make sense of how
to gauge and record for the different segments of
channel use. To this end, let us precisely analyze node
A's neighborhood line demonstrated in Figure 4. At
the point when a bundle in any cordial line is
transmitted, node A will recognize the medium as
occupied. In the event that a parcel is gotten to any
approaching line, hub A can likewise realize this
through the CTS bundle (we accept IEEE 802.11 MAC
layer). These two estimations can infer inputs required
for FSD usage.

FSD develops the first RED plan. Every hub
continues assessing the span of its neighborhood line
(distributed queue). When the queue size surpasses a
certain threshold, a overall drop probability is
processed by the calculation of RED. This general drop
probability is then proliferated to neighboring nodes
for cooperative packet drops.

Distributed Queue of a Node-the outgoing queue
of the node itself, 1-hop neighbors' outgoing queues,
2-hop neighbors’ packets which are directed to a 1-hop
neighbor of node A. Simplified Model is 2-hop
neighborhood distributed queue model is not easy to
implement and evaluate a lot of control packet
overhead. The packets in the 2-hop neighbors directed
to a 1-hop neighbor are moved to the 1-hop neighbor.
Outgoing queue has the original queue at a node
Incoming queue has the packets from 2-hop neighbors
as in figure 1.

Fig 1: Neighborhood Queue Model

Neighborhood Congestion Detection (NCD): A node
monitors five different radio state Transmitting (Ttx),
Receiving (Trx), Carrier sensing busy (Tcs), Virtual
carrier sending busy (Tvcs), Idle (Tidle). By monitoring
the five radio states, a node can now estimate 3
channel utilization ratio
Total channel utilization
Ubusy = (Tinterval - T idle)/ Tinterval
Transmitting ratio Utx = Ttx/ T interval
Receiving ratio Urx = Trx/ Tinterval
Tinterval = Ttx + Trx + Tcs + Tvcs + Tidle
Ubusy reflects the size of the neighborhood queue
Utx and Urx reflect the channel bandwidth usage of the
outgoing queue and incoming queue at current node.
To facilitate the implementation of the RED algorithm,
the channel utilization is translated into an index of
the queue size
The queue size index q = Ubusy * W /C
W: channel bandwidth, C: the average packet size
Now the original RED scheme can be applied
The average queue size, avg = (1-wq)*avg + wq*q
If the queue size exceeds a certain threshold, the
neighborhood is in congestion.
Drop probability
Pb = Maxp* (Avg – Minth)/(Maxth - Minth)
Normalized Pb = Pb/avg
Current node A broadcasts Drop probability to 1-hop
neighbors.
The broadcast message drop probability + life time
Neighborhood nodes choose the largest drop
probability, if they receive multiple NCN.

4 RESULTS

Fig 2: Verification of Queue size

In figure 2, estimated average queue size and the real
average queue size of Node 5’s neighborhood under
FTP/TCP connections.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1034
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

It is observed that when there is heavy congestion,
the estimated queue size goes around 240 packets.
Thus, we choose maxth as 240. To get smooth drop
probability, we set minth as 100. Simulation
experiments are used to decide the optimal values of
maxp.

Fig 3: Instantaneous throughput dynamics under

mobility without FSD

In Figure 3, the disadvantage of competing the
channel is shown.

Fig 4: Instantaneous throughput dynamics under

mobility with FSD

In figure 4, it is shown that the two flows can
share the channel fairly when they are close enough to
interfere with each other.
It clearly demonstrates that the FSD scheme is indeed
can adapt to mobility.

Fig 5: Overall throughput of each TCP connections

with and without FSD.

In figure 5, we can observe that FSD scheme is still
able to improve fairness in general, especially reflected
by throughput of flow 2 and flow 3. First, TCP
throughput is highly affected by the number of hops
from senders to receivers.

5 CONCLUSION

TCP performance is critical to the broad
acceptance of multi hop wireless networks. In this
paper, we proposed a scheme called FSD, which is an
extension of the RED originally developed in the ad
hoc wireless networks. By detecting early congestion
and dropping packets proportionally to a flow’s
channel bandwidth usage, the FSD scheme is able to
improve TCP fairness.

REFERENCES:

[1] Enhancing TCP Fairness in Ad Hoc Wireless Networks Using
Neighborhood RED by Kaixin Xu, Mario Gerla, Lantao Qi, Yantai Shu
[2] Network Coding for Improving the Fairness of Long-Hop TCP Flows
in a Multi-Hop Wireless Network by Yong Oh Lee, Manish Kumar
Singh
[3] Evaluation of Queue Management Algorithms by Ningning Hu, Liu
Ren, Jichuan Chang Computer Networks.

IJSER

http://www.ijser.org/

